
Jingren Wang, May 7th, 2025

Revisit ABC from scratch with basics

Logic synthesis in a nutshell

Overview
See this talk as a review!🧐

• History of UCB Synthesis and Verification toolset

• Where, when to do logic synthesis

• The advantage and drawback of ABC

• AIG, Cut, Window, Simulation, Choices, Don’t care etc.

A bit of history
Espresso? ☕

Ref: https://people.eecs.berkeley.edu/~alanmi/publications/2010/cav10_abc.pdf

AIG
Just the one wildly used!🤔

• Merge View/Separate view/General node/Discrete node/Generic node

• Based on the problem scale: Truth table->SOP->BDD->AIG

• Truth table/SOP/BDD are not discarded.

• Canonical or not/what is under the hood

• Other IR(GIG): MIG/XMG/XAG…

• Even more: semi-tensor product Ref: Data Structures and Algorithms for Logic Synthesis in Advanced Technologies

Task: Check how to do it manually: https://github.com/arminbiere/aiger

MAJ3(x, y, z) = (x ∧ y) ∨ (x ∧ z) ∨ (y ∧ z)

Task: Permutation on TT: https://wjrforcyber.github.io/files/Kitty_Permutation.pdf

https://wjrforcyber.github.io/files/Kitty_Permutation.pdf

Where/When
From Yosys perspective!📁

Ref: https://yosys.readthedocs.io/_/downloads/en/latest/pdf/

We are only concentrating on logic synthesis.

AIG
Always structural hashed!🥽

- No structural hash.

- One-level structural hash.

- Two-level structural hash.

(a ∨ b) ∧ (b ∨ d) (a ∧ d) ∨ b

Ref: Local Two-Level And-Inverter Graph Minimization without Blowup

AIG
Deep Dive into cuts!✂

Ref: https://people.eecs.berkeley.edu/~alanmi/presentations/priority07.ppt

Φ (n) ≡
{{n}}, if n is a PI

{{n}}⋃(Φ (n1) ⋈ Φ (n2)), otherwise

A ⋈ B ≡ {u ∪ v ∣ u ∈ A, v ∈ B, ∣ u ∪ v ∣ ≤ k}

• Cut

• K-feasible cut

• Factor cut

• Priority cut

• Reconvergence-driven cut

Cartesian product

https://people.eecs.berkeley.edu/~alanmi/presentations/priority07.ppt

AIG
Deep Dive into cuts!✂

• Cut

• K-feasible cut

• Factor cut

• Priority cut

• Reconvergence-driven cut

Why dominated?

{a, d, b, c}
is dominated by
{a, b, c}

AIG
Deep Dive into cuts!✂

• Cut

• K-feasible cut

• Factor cut

• Priority cut

• Reconvergence-driven cut

In ABC, how does it do detect on duplication/
dominance/feasibility:

Signatures-encode in bit level.

Given , cut , cut
, cut , calculate the

signature of each one of them.

M = 8 {32,68,69}
{32,68,70} {36,64,69}

sign(C) = ∑
n∈C

2ID(n) mod M

AIG
Deep Dive into cuts!✂

• Cut

• K-feasible cut

• Factor cut

• Priority cut

• Reconvergence-driven cut

What’s the problem of K-feasible cut?

AIG
Deep Dive into cuts!✂

• Cut

• K-feasible cut

• Factor cut

• Priority cut

• Reconvergence-driven cut

1. Term factor: A parenthesised representation
of a tree network which has internal gate
AND and OR.

Ref: Electronic Design Automation: Synthesis, Verification, and
Test (Systems on Silicon)

2. FFLC(Factored Form Literal Count)

3. Term cofactor.

Some extra term:

Task: Try find out how FFLC is related to AIG structure.
Ref: Improving Standard-Cell Design Flow using Factored Form Optimization

AIG
Deep Dive into cuts!✂

• Cut

• K-feasible cut

• Factor cut

• Priority cut

• Reconvergence-driven cut

Factor tree/tree nodes/dag nodes

1-step expansion: to {a, b, z} {p, q, b, z}

Ref: Factor cuts https://people.eecs.berkeley.edu/~alanmi/
publications/2006/iccad06_cut.pdf

https://people.eecs.berkeley.edu/~alanmi/publications/2006/iccad06_cut.pdf
https://people.eecs.berkeley.edu/~alanmi/publications/2006/iccad06_cut.pdf
https://people.eecs.berkeley.edu/~alanmi/publications/2006/iccad06_cut.pdf

AIG
Deep Dive into cuts!✂

• Cut

• K-feasible cut

• Factor cut(CF)

• Priority cut

• Reconvergence-driven cut

{Tree cuts (Local cuts)
Reduced cuts (Global cuts)

Tree cuts

Very explicit, the cut has boundaries.

ΦΓ (n) ≡
{{n}}, if n is a PI

{{n}}⋃(Φ†
Γ (n1) ⋈ Φ†

Γ (n2)), otherwise

Φ†
Γ (n) ≡ {∅, n ∈ ϝ

ΦΓ (n), otherwise
Auxiliary function:

AIG
Deep Dive into cuts!✂

• Cut

• K-feasible cut

• Factor cut(CF)

• Priority cut

• Reconvergence-driven cut

Reduced cuts

Very explicit, the cut has boundaries.

Φρ (n) ≡
{{n}}, if n is a PI

{{n}}⋃(Φρ (n1) ⋈ Φρ (n2)∖ΦΓ (n)), otherwise

{Tree cuts (Local cuts)
Reduced cuts (Global cuts)

AIG
Deep Dive into cuts!✂

• Cut

• K-feasible cut

• Factor cut(PF)

• Priority cut

• Reconvergence-driven cut

{Leaf-dag cuts (Local cuts)
Dag cuts (Global cuts) Task: Try find out why we need this? What’s the main difference?

AIG
Deep Dive into cuts!✂

• Cut

• K-feasible cut

• Factor cut

• Priority cut

• Reconvergence-driven cut

Two ways of generating cuts: Bottom-up(traditional
way of generating cut) and Top-down(factor cut).
Ref: Data Structures and Algorithms for Logic Synthesis in Advanced Technologies

AIG
Deep Dive into cuts!✂

• Cut

• K-feasible cut

• Factor cut

• Priority cut

• Reconvergence-driven cut

Just cuts with cost function.

AIG
Deep Dive into cuts!✂

• Cut

• K-feasible cut

• Factor cut

• Priority cut

• Reconvergence-driven cut Maintain as few growth on leaves as
possible while extending cut volume

AIG
MFFC and why it’s important!🪟

• MFFC = Maximum Fanout Free Cone

• Remove the target node = remove its MFFC

• MFFC could be extend to MFFW (Maximum
Fanout Free Window)

In ABC, how does it get MFFC of each node?

Reference/Dereference - A general technique
to collect the support variables and nodes in
the MFFC.
*Check the command print_mffc.

AIG
MFFC and why it’s important!🪟

• MFFC = Maximum Fanout Free Cone

• Remove the target node = remove its MFFC

• MFFC could be extend to MFFW (Maximum
Fanout Free Window)

Don’t care
Redundancy removal!🧹

Task: Try find out definition of external don’t care.
Ref: Don’t care cheatsheet https://wjrforcyber.github.io/files/
DONTCARE.pdf

Task: Check the definition of .exdc in BLIF format, which DC does it indicate?

Resub
Check what is under the hood!🔬

• A brief introduction on , and why it is important.

• Put effort on basics not algorithms.

resub

AIG Choices
Extend exploration space!🔍

Synthesis

D2
D1

Synthesis with structural choices

D3
HAIG

D2D1 D3 D4

D4

Ref: https://people.eecs.berkeley.edu/~alanmi/presentations/abc_2024.pptx

https://people.eecs.berkeley.edu/~alanmi/presentations/abc_2024.pptx

FRAIG
Functionally reduced AIG!🔍

- If the equivalent nodes accumulated, then choices are made.

Task: Check out and in ABC.fraig_store fraig_restore

AIG Dangling nodes
Use choices with care! 👀

Dangling nodes are nodes without fanout in AIG,
eliminate dangling nodes won’t hurt the network
equivalence.

ABC always contains a compact AIG intermediate
representation, think about how does it affect the
use of choices?

A bit on mapping
The gap still exists!🫠

- A view on the whole design from industry level.

- Lack of bridging method between separate views.

- Critical path, mapping without sizing, high-fanout issue, retiming…

ABC
Advantage of SOTA Synthesis Tool!🔧

• Contain most of the SOTA optimisation method.

• Low memory footprint.

• Ongoing research and maintenance.

• Most of the startups using ABC as a prototype.

ABC
Drawbacks of SOTA Synthesis Tool!🔧

• Poor Verilog support.

• Limited sequential elements support.

• Poor documentation and tons of redundant code.

• Although open source, maintaining the whole repo is hard.

A collection
Commands with papers!📖

• Me myself maintain a repository of ABC commands and related paper
https://github.com/wjrforcyber/ABCPaperCheck

• Another recommendation: mockturtle:
https://github.com/lsils/mockturtle

• A handy tool that helps with tests on AIGs:
https://github.com/arminbiere/aiger

Alice's Adventures in Wonderland

https://github.com/wjrforcyber/ABCPaperCheck
https://github.com/lsils/mockturtle
https://github.com/arminbiere/aiger

Ideas/Bugs and discussion
Do drop me emails!📧

1. Email is the most preferred way to get in touch.

2. MRE(Minimum Reproducible Example) is preferred.

3. Separate the dependencies between packages.

4. Join the discussion, expose problems, but always try
by yourself before asking others.

jingrenwangcyber@gmail.com

https://en.wikipedia.org/wiki/Minimal_reproducible_example#:~:text=In%20computing,%20a%20minimal%20reproducible,to%20be%20demonstrated%20and%20reproduced.
mailto:jingrenwangcyber@gmail.com

Thanks!

