Logical Neural Networks

An Introduction - Dip our toes in LNN

Neural Symbolic AI

An overview-NS

A higher level of the purpose

- "In particular it is aimed at **augmenting (and retaining)** the strengths of statistical AI (machine learning) with the complementary capabilities of symbolic AI (knowledge and reasoning)."
- "...revolution rather than evolution."

An overview-NS

A higher level of the purpose

- Solve harder problems.
- Learn with less data while maintain the ability to generalise to a large number of tasks.
- Provide white box reasoning on decision/action.

An overview-NS

News?

- LLM Reasoning -Denny Zhou
- <u>Teaching LLMs to Plan: Logical Chain-Of-Thought Instruction Tuning for Symbolic Planning</u>
 MIT CSAIL

•

Logical Neural Networks

What's the definition?

- Syntax trees
- Formulae
- Neurons for logical operation/proposition

⊗: Real value conjunction

⊕: Real value disjunction

Ref: https://arxiv.org/pdf/2006.13155

What's the main difference? - Activation function

Compare with classical activation function

Ref: https://arxiv.org/pdf/2006.13155

What's the main difference? - Activation function

- Λ , V, \neg , \rightarrow are implemented by constrained neural activation function
- Behaviours should be the same in classical exact inputs

$$T_G(a,b) = min(a,b) = b$$
, if $b < a$

$$T_P(a,b) = a \times b$$

$$T_L(a,b) = max(0,a+b-1)$$

What's the main difference? - Bounds on results

• Truth values can be known/approximately known/unknown/contradictory states.

What's the main difference? - Bidirectional inference

- Upwards: Normal propagate
- Downwards:

```
x, x \to y \vdash y (modus ponens) x, \neg(x \land y) \vdash \neg y (conjunctive syllogism) \neg y, x \to y \vdash \neg x (modus tollens) \neg x, x \lor y \vdash y (disjunctive syllogism)
```

Ref: https://arxiv.org/pdf/2006.13155

What's the main difference? - Bidirectional inference

- The Upward-Downward algorithm.
- Propagates truth value upwards and downwards, tightening the truth bounds.
 - Q: What if it drops into an infinite loop? Input becomes more true, output becomes less true? Will this happen?

What's the main difference? - Bidirectional inference

- Theorem 1. Given monotonic \neg , \bigoplus , and f, the upward pass and downward pass converges within ϵ in **finite time**.
- Q: Does this hold in FOL?

Ref: https://en.wikipedia.org/wiki/Cauchy_sequence

Reason under the hood: Cauchy sequence

What's the main difference? - Bidirectional inference

• Q: Does this hold in FOL? No. But LNN works in FOL, how does it do? (Skip)

What's the main difference? - Bidirectional inference

- Theorem 2 (Modified). The L and U on any formulae are concrete/sound bounds on possibility based on all the previous acquired knowledge.
- A sound and probabilistic reasoner.
 Shows the adaptive ability to open-word assumptions with incomplete knowledge compared to classical Markov Logic Networks. ("unknown"!)

Learning

A bit of the power on leaning

- Allows for contradiction (Logic inconsistency) $L_{\rm x}>U_{\rm x}, T_{\rm x}>L_{\rm x}, T_{\rm x}< U_{\rm x}$
- In propositional logic, what is the representation of the logic inconsistency?

Learning & Showcase

Wait, weights?! Live coding!

- See how it works in the Cat-Dog case.
- See how it works with example of conjunction.

Resources

IBM's archive

- An overview of all related projects. (Some of them are not properly archived)
- NSTK

Thank you

