
Implementing System T in Haskell

Jingren Wang

School of Computing Science
Sir Alwyn Williams Building

University of Glasgow
G12 8QQ

A dissertation presented in part fulfilment of the requirements of the
Degree of Master of Science at The University of Glasgow

Dec 12th, 2021

Abstract

Computers are general-purpose computing devices, and programming languages enable program-
mers to talk to them. In programming languages, we study the meta-theory of programming
languages, such as, their expressivity, robustness, and efficiency.

In this project, we perform a case study in the design and implementation of programming lan-
guages. We design a toy language based on System T, and implement it using Haskell. Our
language has natural numbers, booleans, higher-order functions and recursion. We design a bi-
directional type system and an operational semantics for it. We evaluate our language implemen-
tation by verifying important properties of the type system and operational semantics. We write
several example programs in our language and run them, comparing the performance against their
native implementation.

Education Use Consent

I hereby give my permission for this project to be shown to other University of Glasgow students
and to be distributed in an electronic format. Please note that you are under no obligation to
sign this declaration, but doing so would help future students.

Name: Jingren Wang Signature: Jingren Wang

All source code for this project can be found at: https://github.com/wjrforcyber/
SystemT.

1

https://github.com/wjrforcyber/SystemT
https://github.com/wjrforcyber/SystemT

Acknowledgements

Firstly, I want to thank my supervisor Vikraman Choudhury. This project literally opened my
eyes in programming language. And it is the first time I build a language in Haskell. It changes
the way I think about programming. My supervisor was very patient to me during the past few
months, and we met in person every week, without his help I cannot reach this far.

Also, I want to say thanks to my parents, although they are seven hours ahead of me, they are
always patient and try to spend time talking to me when I’m under pressure.

Due to this Covid-19, this is a very hard but special year not only for me, but for all of us. So I also
want to say thanks to my friend Ella Kohn, thanks for the study time we spent together, nothing
could compare to those precious time. And also, thanks to all those friends who showed up during
my solo hiking journey at amazing Balloch and helpful and friendly strangers at University of
Glasgow.

2

Contents

1 Introduction 5

1.1 Design overview . 5

1.2 Outline . 6

2 Background 7

2.1 Typing . 7

2.2 Bidirectional type checking . 8

2.3 Operational Semantics . 8

2.4 Tasty . 9

2.5 Criterion . 10

2.6 Prettyprinter . 10

2.7 GADTs . 10

2.8 System T . 10

3 L3: A language with numbers and booleans 12

3.1 Grammar . 12

3.1.1 Syntax of L3 . 12

3.1.2 Type checking . 12

3.1.3 Semantics . 13

3.1.4 Implementation . 13

3.1.5 Testing . 16

3.2 Intrinsic L3 . 16

3

4 L6: A language with many types 18

4.1 Grammar . 18

4.1.1 Syntax of L6 . 18

4.1.2 Type checking L6 . 19

4.1.3 Symantics L6 . 20

4.1.4 Implementation . 20

4.1.5 Function Testing . 24

5 Evaluation 28

5.1 Tests . 28

5.2 Benchmark . 29

6 Conclusion 31

A Benchmark result 34

4

Chapter 1

Introduction

In the study of programming languages, various techniques are used in implementing and formal-
izing meta-theory of programming languages [Har16]; type systems and operational semantics
are the typical forms which provides an objective foundation for such analyses [Har05]. In this
project, Haskell will be used as a host language to design a programming language similar to Sys-
tem T [Göd58], with higher-order functions and recursion, and a bidirectional type-checker and
an evaluator to ensure its coherence and consistency with expectations.

A programming language provides notation or syntax for developers to write programs [Aab96].
There are lots of different types of programming languages, such as Python, C, Haskell, Rust,
Ocaml, etc. Nowadays, functional language is becoming more and more popular. The main rea-
son is developers like neat, friendly, easier-to-debug ways to construct programs, and functional
programming languages are powerful in doing recursive programming. Haskell [Hal+92], as one
of the leading fast-growing programming languages, has been selected as the host programming
language for our implementation.

The semantics are used to describe how a system works, that is what behaviour does the sys-
tem has. In our project, system specifically based on system T, generally speaking, semantics are
the system’s analysis [Gog75]. Semantics are also needs to be very rigorous because they avoid
ambiguity and clear complicity in defining documents as well as form basis for implementation,
analysis and verification [NN07].

1.1 Design overview

We start by designing a simple language L1 with a single type – natural numbers with primitive
operations for addition and multiplication.

L6 is the final language based on system T which is gradually developed step by step from L1. To
reach L6, the new type constructors are added one after another. The overview of the project is
shown in figure 1.1.

In L1 and L2, natural numbers are used from the host language, that is, we define natural numbers
in Haskell, and use them for the expressions in our language. In L3, we have first-class expressions

5

Figure 1.1: Overview of L1 to L6 type structure

for constructing natural numbers, that is, we have an expression form for zero, and an expression
form for successor. In L4, Unit and Product types are added to L3, so if A is a type and B is a
type, then A × B is a type, which means we now have infinitely many types which can be formed
recursively, such as, Nat × Nat, Nat × Bool, (Nat × Bool) × Bool, (Nat × (Nat × Nat)) × ((Nat ×
Bool) × (Bool × Bool)) etc. We add higher-order functions, variables, lambda abstractions, and
application in L5, means now we could now do functions. In L6, recursion is added based on
L5 to enable recursion using natural numbers, which makes our language much more powerful.
Recursive expression in L6 take three parameters, first expression and second expression based
on third expression, second expression always applies to the third expression unless the third
expression reduced to 0, which is the time to return the first expression.

1.2 Outline

• In Chapter 2, we give a background of the method, library, framwork we used in our design
and experiment, which includes typing, testing framework Tasty, benchmarking framework
Criterion, friendly-format building tool Prettyprinter.

• In Chapter 3, we describe the language L3, its syntax, grammar, type system, and Big-step
semantics. We also describe and intrinsic and extrinsic implementation of it in Haskell.

• In Chapter 4, we describe the final language implementation L6, in a similar structure as
chapter 3, but with products, function, iteration, which is important in constructing func-
tions. And both Big-step and Small-step semantics are in L6. Reduction rules and several
testing functions are implemented in L6, too.

• In Chapter 5, we demonstrate the evaluation result from Tasty and Criterion to give expla-
nation on the correctness and performance of our language.

• In Chapter 6, we conclude by discussing the potential future work on the language.

6

Chapter 2

Background

2.1 Typing

We want to make sure the programmer doesn’t write bad programs, that is, we don’t want pro-
grams to get stuck at runtime. A type system weeds out invalid programs, that is, we assign types
to programs, and only allows the programmer to execute programs that are well-typed using our
typing rules. To do this, we design a type system, and implement a type-checker.

There are many ways of designing type systems. In this work, we use bi-directional typing, which
consists of a type-checker and type-synthesiser (or type-inferencer). A type system is described
using judgements and inference rules.

A judgement is a relation, connecting expressions to types. It is a statement, sometimes states one
or more syntax trees have some properties or stand in some relation [Har16]. For example,

𝑒 ∶ 𝜏

means 𝑒 has the type 𝜏 .

𝑒 ⇓ 𝑣

means 𝑒 reduce to the value 𝑣.
In bidirectional type checking, we split 𝑒 ∶ 𝜏 into check:

𝑒 ⇐ 𝜏

and infer:

𝑒 ⇒ 𝜏

As for type inference, an inference rule lets us use our hypotheses to infer new information. In this
case, for example, knowing the type of a sub-expression, allows us to infer the type of the whole
expression. Inference always needs judgments, collection in premises sufficient for the conclusion.

7

If premise is empty, the conclusion stands, then the conclusion stands unconditionally [Har16].
For example,

𝑒 ⇐ Nat

Suc(𝑒) ⇒ Nat

To infer Suc(𝑒) has type Nat, the expression 𝑒 must be checked to have a Nat type too.

2.2 Bidirectional type checking

In bidirectional type systems, there are two kinds of judgements, one for type-checking, and one
for type-inference. Bidirectional type checking, as its name shows, involves types, bidirectional
checking, which means check and synthesis of types(in this project we use infer instead of syn-
thesis). So firstly, a completed type system should be built, our project, which is different from
the original system T, Boolean, Unit, Product, and Function types are added to the system and
then rules are written to make sure type checker and infer works as we expected. To make a type
system bidirectional, a bottom-up type information derivation rule construction is much easier to
think[Pfe04]. Detailed construction of the bidirectional type checking will be shown in L3 and L6
in this thesis.
Bidirectional type checking is used into the implementation from L1 to L6, we also used nota-
tion in bidirectional type checking rules in lambda expression, and then it could help type system
syntax-directed[Chr19].

Bidirectional checking rules can be evaluated by Lecture Notes on Frank Pfenning’s Bidirectional
Type Checking[Pfe04], there is a four-steps rule:
1. Assume each input constituent of the conclusion is known.
2. Show that each input constituent of the premise is known, and each output constituent of the
premise is still free (unknown).
3. Assume that each output constituent of the premise is known.
4. Show that each output constituent of the conclusion is known.
Whenever a rule has been constructed, this four-steps rule can be applied to check if it is con-
structed in a correct way.
For a general understanding of bidirectional rules, infer is always much stronger than check, it
needs more bounds and premises for conclusion to stand.

2.3 Operational Semantics

An operational semantics for a language explains how to execute programs written in that lan-
guage. There are many styles of doing operational semantics. In this work, we design and imple-
ment small-step and big-step operational semantics.

An operational semantics is presented as a reduction system, that is, a binary relation on the set
expressions of the language.

The two ways of doing operational semantics have been used in L6, Big-step and Small-step, each
of them has strength and weakness. We can use them both in our design from L1 to L6. Big-
step is mostly used in an interpreter in simple language, which makes it efficiently evaluates.

8

Small-step is used to step through the example program in complicated language, which will help
evaluate each step of the example program to test the language’s robustness and soundness. From
L1 to L5, big-step evaluation interpreter has been used, in L6, Small-step and Big-step method is
implemented. Big-step semantics or Small-step semantics, which one to choose depends on the
size, complicity, programming language itself and more importantly, what to prove[Owe+16]. As
for Big-step, expressions can be reduced to values, for example,

𝑒 ⇓ Suc𝑛(0)
Suc(𝑒) ⇓ Suc𝑛+1(0)

If 𝑒 can be evaluated to a value of applying 𝑛 times Suc to Zero, then Suc(𝑒) should be evaluated
to a value of applying 𝑛 + 1 times Suc to Zero.
As for Small-step, on the other hand, for example,

𝑒 ↦ 𝑒′

Suc(𝑒) ↦ Suc(𝑒′)

evaluated expressions in small step, one step of evaluation a time. ↦ is from transition system, for
example, 𝑒 ↦ 𝑒′ means state 𝑒 may transition to state 𝑒′. In the example above, if 𝑒 step evaluate
to another expression 𝑒′, then Suc(𝑒) evaluates to Suc(𝑒′). In this case, 𝑒′ may have the chance
to continue the next evaluation step.

In this project, we need an evaluator to run our program on our computer, the evaluator will help
evaluate if the system T constructed in L3 or L6 is correct or not by comparing evaluated values
to expected values, and it will help check if all the condition is covered. Normally, evaluation will
end up with a final value result which is actually a subset of the expression, and this design can
later be tested by Tasty framework. Evaluator is also important when the benchmark evaluates
the efficiency of the program. Accurate sample values should be passed into the benchmark, so
the evaluator could run the program properly in the system T we designed.

2.4 Tasty

Tasty is a test frameworkwhich combines unit testing, property testing, etc in a single test package.
It will automatically generate a report for your recent test, and the number of the tests, test cases
and test time can be customized by user. Tests are run in parallel but report results are in a
deterministic order.
Unit tests allow the user to write single inputs when a specific feature needs to be tested. Quick
check helps create property tests which could tests several cases at the same time, but the cases
generated are random and sometimes cannot find the potential problem in our program, but large
amount of passed tests can always make sure it works well. The better way to test is shown in
this project, we combined unit tests and property tests together to make sure as many cases as
possible should test are tested.
The detail of this package can be found here: https://github.com/UnkindPartition/tasty

9

2.5 Criterion

Criterion can help users write micro-benchmark in Haskell. This library helps analyse perfor-
mance of specified programs and compare the results. A report will be automatically generated
and in this paper is attached at the appendix part.
The report will start with an overview of all the performances which can show data interactively
if you move the mouse on the chart, and you could even choose the showing order when selected
a specific feature in the drop-down menu. After the overview, detailed result of every each one of
the groups you have compared will be shown in two charts, on the left is kernel density estimate
(KDE) and on the right is the raw data from which the kernel density estimate is built. Under
each pair of charts, there are also OLS regression, R² goodness-of-fit, Mean execution time and
Standard deviation details. These results of our project will be attached in Appendix B.
The detail of this package can be found here: https://github.com/haskell/criterion

2.6 Prettyprinter

As a text rendering engine, Prettyprinter can print programswritten in our language, PrettyPrinter
uses Text data type, it supports Unicode and all kinds of expressions can be self-defined.
When there are too many iterative expressions, it it much easier to read if a more common math-
ematic expression can replace the expressions defined in the expression abstract syntax tree.

2.7 GADTs

Two different views of types which are Haskell Curry andAlonzo Church late refer to extrinsic and
intrinsic types. Extrinsic semantics system means every phrase that satisfying typing judgment
has the meaning, these typing judgments collected to give properties to this meaning.
However, there is no need to consider untyped expressions in intrinsic semantics, every expression
defined in the abstract syntax tree has an independent and unique meaning which supports by the
type judgement[Rey00].

In this project, we use GADTS to construct our intrinsically typed Abstract Syntax Trees. GADTs
is short for Generalized Algebraic Data Types. It helps constructors have a non-uniform return
type, which allows us to encode invariants about a data structure in its own type[Zil15]. It simply
adds type annotations to the constructor defined in the project. After this type signature, the
type checker is no longer required, because the signature bounds the type of the constructor, the
constructor can only return the type it belongs to.

2.8 System T

Original System T, which was introduced by Gödel in 1958[Göd58] has simply typed lambda cal-
culus with natural numbers and recursion. Gödel use System T dealt with Heyting Arithmetic,
which leads to the availability of interpret Peano Arithmetic.
System T provides a primitive recursion, it can express to total higher-order primitive recursive

10

functions, all programs terminate.
In this project, Haskell is used as a base language to implement System T with more interesting
features.

11

Chapter 3

L3: A language with numbers and
booleans

In L3, System T with natural number and boolean will be constructed. In the syntax, we describe
Types, Expressions, Values and Judgements. We also describe the statics typing rules and dynamic
operational semantics.

3.1 Grammar

3.1.1 Syntax of L3

In L3, seven expressions are shown in the syntax. In simple L1 and L2, which are not displayed in
this thesis, natural numbers and boolean are not constructed by ourselves but using the original
ones in Haskell. In L3 every natural number can be written by EZero and ESucc, and True can be
written in ETrue and False can be written in EFalse.

Types 𝑇 ∶∶= Nat | Bool
ExpRessions 𝑒 ∶∶= Zero | Suc(𝑒) | true | false | if 𝑒1 then 𝑒2 else 𝑒3 | 𝑒1 + 𝑒2 | 𝑒1 ∗ 𝑒2
Values 𝑣 ∶∶= Suc𝑛(Zero) | true | false
Judgements 𝒥 ∶∶= ⊢ 𝑒 ∶ 𝑇

Figure 3.1: Grammar of L3

3.1.2 Type checking

Bidirectional checking rules used in L3 has natural numbers and boolean types in expression, rules
are written in two directions with synthesis and check, which synthesis is stricter in premises than
check.
We could use if 𝑒1 then 𝑒2 else 𝑒3, the most complicated one in L3 as an illustration example. In

12

Type Infer/Synthesis

⊢ Zero ⇒ Nat
ZeRo

⊢ 𝑛 ⇐ Nat

⊢ Suc(𝑛) ⇒ Nat
Suc

⊢ true ⇒ Bool
TRue ⊢ false ⇒ Bool

False

𝑒1 ⇐ Nat 𝑒2 ⇐ Nat

⊢ 𝑒1 + 𝑒2 ⇒ Nat
EAdd

𝑒1 ⇐ Nat 𝑒2 ⇐ Nat

⊢ 𝑒1 ∗ 𝑒2 ⇒ Nat
EMul

𝑒1 ⇐ Bool 𝑒2 ⇒ 𝑇 𝑒3 ⇒ 𝑇 ′ 𝑇 = 𝑇 ′

⊢ if 𝑒1 then 𝑒2 else 𝑒3 ⇒ 𝑇 EIf

Type check

⊢ Zero ⇐ Nat
ZeRo

⊢ 𝑛 ⇐ Nat

⊢ Suc(𝑛) ⇐ Nat
Suc

⊢ true ⇐ Bool
TRue ⊢ false ⇐ Bool

False

𝑒1 ⇐ Nat 𝑒2 ⇐ Nat

⊢ 𝑒1 + 𝑒2 ⇐ Nat
EAdd

𝑒1 ⇐ Nat 𝑒2 ⇐ Nat

⊢ 𝑒1 ∗ 𝑒2 ⇐ Nat
EMul

𝑒1 ⇐ Bool 𝑒2 ⇐ 𝑇 𝑒3 ⇐ 𝑇
⊢ if 𝑒1 then 𝑒2 else 𝑒3 ⇐ 𝑇 EIf

Figure 3.2: Bidirectional checking rules of L3

synthesis rule, the input is ”if 𝑒1 then 𝑒2 else 𝑒3”, the output is type 𝑇 . In the premises, 𝑒1 has
to checked to a Bool type and if 𝑒2 can be inferred to type 𝑇 , 𝑒3 can be inferred to type 𝑇 ′, the
conclusion can only stand if 𝑇 equals to 𝑇 ′.

3.1.3 Semantics

Big-step oprational semantics

Figure 3.3 shows the Big-step semantics in L3.

3.1.4 Implementation

We implement L3 in Haskell, using Haskell data types to encode the abstract syntax trees for
types, expressions, and values. Then, we implement the bidirectional type-checker, and big-step
evaluator.

13

Zero ⇓ Zero
ZeRo

𝑒 ⇓ Suc𝑛(Zero)
Suc(𝑒) ⇓ Suc𝑛+1(Zero)

Suc

true ⇓ true
ETRue

false ⇓ false
EFalse

𝑒1 ⇓ Suc𝑛1(0) 𝑒2 ⇓ Suc𝑛2(Zero)
𝑒1 + 𝑒2 ⇓ Suc𝑛1+𝑛2(Zero) EAdd

𝑒1 ⇓ Suc𝑛1(Zero) 𝑒2 ⇓ Suc𝑛2(Zero)
𝑒1 ∗ 𝑒2 ⇓ Suc𝑛1∗𝑛2(Zero) EMul

𝑒1 ⇓ true 𝑒2 ⇓ 𝑣2
if 𝑒1 then 𝑒2 else 𝑒3 ⇓ 𝑣2

EIf-TRUE
𝑒1 ⇓ false 𝑒3 ⇓ 𝑣3

if 𝑒1 then 𝑒2 else 𝑒3 ⇓ 𝑣3
EIf-FALSE

Figure 3.3: Big-step semantics of L3

Type

L3 has two data type, TNat and TBool, as defined in type syntax.

data Ty
= TNat
| TBool

Figure 3.4: Type definition in L3

Expression

An abstract syntax tree(AST) is wildly used in defining expressions, it is an ordered tree, and
whose interior nodes are operators whose arguments are its children[Har16].
AS figure 3.5 shows, Expression in L3 is defined using AST, which is written using an algebraic
data type(ADT) in Haskell, it is defined iteratively and can capture essential input while at the
same time omit unnecessary syntactic details like tree nodes[Jon03].

data Exp
= EZero
| ESucc Exp
| ETrue
| E F a l s e
| EAdd Exp Exp
| EMul Exp Exp
| E I f Exp Exp Exp

Figure 3.5: Expression definition in L3

14

Value

Value in figure 3.6 is the evaluation result of all the expressions in L3, it is a subset of expressions
but defined separately here in L3. Here Nat is directly used to consist all the natural numbers,
VSuccN(Nat) means Suc𝑛(Zero) apply Suc 𝑛 times. notice that VSuccN 0 equals to 0, which is
quite different from the ’successor 0’, which equals to 1. VTruemeans true and VFalsemeans false.

data Val
= VSuccN Nat
| VTrue
| VFa l s e

Figure 3.6: Value defination of L3

Type checking

In type checking, Monad has been derived in a new defined TC type in figure 3.7:

newtype TC a = TC { runTC : : Either TCError a }
deriving (Eq , Show , Functor , A pp l i c a t i v e , Monad)

Figure 3.7: TC type

An either type is defined in the TC type where left is an error message which has the type of String
and right is the value of the Unit type returns.
tccheck is used to check if the expression has a proper given type: while tcinfer synthsis a type

t c che ck : : Exp −> Ty −> TC ()

Figure 3.8: tccheck

from expression, as reference discussed in 2.1:

t c i n f e r : : Exp −> TC Ty

Figure 3.9: tcinfer

Big-step evaluation

We implemented Big-step rules in L3, since values are defined and available in L3, a direct big step
evaluation is constructed by:

15

e v a l : : Exp −> Maybe Val

Figure 3.10: Big-step evaluation

The benefit of using Maybe is it can easily return nothing or just the value. Do notation has been
used in the eval function to cover all the possibilities in expressions.

3.1.5 Testing

The test suite is one of the main parts in our project. In L3, tccheck and tcinfer have been tested
by the property tests in all kinds of expressions:

• if a type can be checked with Nat, then it will also be inferred to Nat.

• if a type can be checked with Bool, then it will also be inferred to Bool.

• The text in the entries may be of any length.

are the two cases ran by theQucikcheck.
A new type defined for another two test cases

newtype TcTyExp = TcTyExp { t c g e tExp : : Exp }

Figure 3.11: Well typed expression

• every well-typed expression can be inferred.

• every well-typed expression can be checked for its type.

which bounded expression with ”well-typed”, well-typed programs cannot go wrong [Mil78],
means these generated expressions are meaningful and evaluable. We ensure the expression gen-
erated has a type, by using tcinfer, it is well-typed if tcinfer success.
Another test is about evaluate function,

• Well-typed expressions reduced to a value

which means every expression generated by the arbitrary defined will be reduced to the value
defined.

3.2 Intrinsic L3

In intrinsic L3, type definition still remains the same as the extrinsic ones. However, the expres-
sions are changed since every constructor includes a type signature now, details are in figure 3.12.

16

data Exp : : Ty −> Type where
EZero : : Exp ’ TNat
ESucc : : Exp ’ TNat −> Exp ’ TNat
ETrue : : Exp ’ TBool
EF a l s e : : Exp ’ TBool
EAdd : : Exp ’ TNat −> Exp ’ TNat −> Exp ’ TNat
EMul : : Exp ’ TNat −> Exp ’ TNat −> Exp ’ TNat
E I f : : Exp ’ TBool −> Exp ty −> Exp ty −> Exp ty

Figure 3.12: Intrinsic expression

data Val : : Ty −> Type where
VSuccN : : Nat −> Val ’ TNat
VTrue : : Val ’ TBool
VFa l s e : : Val ’ TBool

Figure 3.13: Intrinsic value

As figure 3.13 shows, Values are changed in the same way with the type signature.
In the evaluation part of intrinsic one in L3, evaluation uses case to make sure the value is correct,
the type of eval is:

e v a l : : Exp ty −> Val ty

Figure 3.14: eval in Intrinsic L3

Take if 𝑒1 then 𝑒2 else 𝑒3 for example, we don’t have to check if 𝑒2 and 𝑒3 has the same type,
because it cannot be wrong since type signature has bound what type it can use. So we only have
to use 𝑐𝑎𝑠𝑒 to check if 𝑒1 is VTrue or VFalse.

𝑒1 ⇓ true

if 𝑒1 then 𝑒2 else 𝑒3 ⇓ 𝑒2
EIf-TRUE

𝑒1 ⇓ false

if 𝑒1 then 𝑒2 else 𝑒3 ⇓ 𝑒3
EIf-FALSE

17

Chapter 4

L6: A language with many types

L6 is based on L3 and there are actually L4 and L5 implementation in between, omitted details of
L4 and L5 can be found in source code.
In L6, a much larger type system has been created. In L6, type includes natural number, boolean,
unit, product and function. Since lambda recursion is implemented in L6, higher order recursive
functions can work well in L6. An extra context is put into use in L6 to make sure every time
variables can be looked up and checked in the context. In addition, reduction rules are defined in
L6 too to make the evaluation much more efficient.

4.1 Grammar

4.1.1 Syntax of L6

L6 is much more complicated and supports functions, which EAdd and EMul were dropped from
the expression because they are no longer needed since they can be constructed by primitive recur-
sion. We have context in L6 which can be understood as a list of variable, which we use to lookup
when doing calculations, extend when new variables arrive. Judgements here have variables have
type 𝑇 belong to Γ or with the judgments and context Γ we can derive the expression has the type
𝑇 , or we could check whether the expression is a value defined by judgement 𝑒 val [Har16].

Types 𝑇 ∶∶= Nat | Bool | Unit | 𝑇 × 𝑇 | 𝑇 → 𝑇
ExpRessions 𝑒 ∶∶= Zero | Suc(𝑒) | true | false |

∗ | Fst(𝑒) | Snd(𝑒) | if 𝑒1 then 𝑒2 else 𝑒3 |
𝑥 | 𝜆(𝑥 ∶ 𝑇).𝑒 | 𝑒1 𝑒2 | (𝑒1, 𝑒2) |
Iter(𝑒1, 𝑒2, 𝑒3)

Context Γ ∶∶= • | Γ, 𝑥 ∶ 𝐴
Judgements 𝒥 ∶∶= 𝑥 ∶ 𝑇 ∈ Γ | Γ ⊢ 𝑒 ∶ 𝑇 | 𝑒 𝑣𝑎𝑙

Figure 4.1: Grammar of L6

18

4.1.2 Type checking L6

Type Infer/Synthesis

Γ ⊢ Zero ⇒ Nat
ZeRo

Γ ⊢ 𝑛 ⇐ Nat

Γ ⊢ Suc(𝑛) ⇒ Nat
Suc

Γ ⊢ true ⇒ Bool
TRue Γ ⊢ false ⇒ Bool

False

Γ ⊢ ∗ ⇒ ∗ Unit

Γ ⊢ 𝑒1 ⇐ Bool Γ ⊢ 𝑒2 ⇒ 𝑇 Γ ⊢ 𝑒3 ⇒ 𝑇 ′ 𝑇 = 𝑇 ′

Γ ⊢ if 𝑒1 then 𝑒2 else 𝑒3 ⇒ 𝑇 EIf

Γ ⊢ 𝑒 ⇒ 𝑇 × 𝑇 ′

Γ ⊢ Fst(𝑒) ⇒ 𝑇 Fst
Γ ⊢ 𝑒 ⇒ 𝑇 × 𝑇 ′

Γ ⊢ Snd(𝑒) ⇒ 𝑇 ′ Snd

𝑥 ∶ 𝐴 ∈ Γ
Γ ⊢ 𝑥 ⇒ 𝐴 VaR

Γ, 𝑥 ∶ 𝐴 ⊢ 𝑒 ⇐ 𝐵
Γ ⊢ 𝜆(𝑥 ∶ 𝐴).𝑒 ⇒ 𝐴 → 𝐵 Lam

Γ ⊢ 𝑒1 ⇒ 𝐴 → 𝐵 Γ ⊢ 𝑒2 ⇐ 𝐴
Γ ⊢ 𝑒1𝑒2 ⇒ 𝐵 App

Γ ⊢ 𝑒1 ⇒ 𝐴 Γ ⊢ 𝑒2 ⇐ 𝐴 → 𝐴 Γ ⊢ 𝑒3 ⇐ Nat

Γ ⊢ Iter(𝑒1, 𝑒2, 𝑒3) ⇒ 𝐴 IteR

19

Type check

Γ ⊢ Zero ⇐ Nat
ZeRo

Γ ⊢ 𝑛 ⇐ Nat

Γ ⊢ Suc(𝑛) ⇐ Nat
Suc

Γ ⊢ true ⇐ Bool
TRue Γ ⊢ false ⇐ Bool

False

Γ ⊢ ∗ ⇐ ∗ Unit

Γ ⊢ 𝑒1 ⇐ Bool Γ ⊢ 𝑒2 ⇐ 𝑇 Γ ⊢ 𝑒3 ⇐ 𝑇 ′ 𝑇 = 𝑇 ′

Γ ⊢ if 𝑒1 then 𝑒2 else 𝑒3 ⇐ 𝑇 EIf

Γ ⊢ 𝑒 ⇒ 𝑇 × 𝑇 ′

Γ ⊢ Fst(𝑒) ⇐ 𝑇 Fst
Γ ⊢ 𝑒 ⇒ 𝑇 × 𝑇 ′

Γ ⊢ Snd(𝑒) ⇐ 𝑇 ′ Snd

𝑥 ∶ 𝐴 ∈ Γ
Γ ⊢ 𝑥 ⇐ 𝐴 VaR

Γ, 𝑥 ∶ 𝐴 ⊢ 𝑒 ⇐ 𝐵
Γ ⊢ 𝜆(𝑥 ∶ 𝐴).𝑒 ⇐ 𝐴 → 𝐵 Lam

Γ ⊢ 𝑒1 ⇒ 𝐴 → 𝐵 Γ ⊢ 𝑒2 ⇐ 𝐴
Γ ⊢ 𝑒1𝑒2 ⇒ 𝐵 App

Γ ⊢ 𝑒1 ⇐ 𝐴 Γ ⊢ 𝑒2 ⇐ 𝐴 → 𝐴 Γ ⊢ 𝑒3 ⇐ Nat

Γ ⊢ Iter(𝑒1, 𝑒2, 𝑒3) ⇐ 𝐴 IteR

4.1.3 Symantics L6

Small-step semantics

Figure 4.2 shows the Small-step semantics in L6.

Big-step semantics

Figure 4.3 shows the Big-step semantics in L6.

4.1.4 Implementation

Types

As mentioned earlier in this chapter, additional types are added to the abstract syntax tree:

20

𝑒 ↦ 𝑒′

Suc(𝑒) ↦ Suc(𝑒′) Suc

𝑒1 ↦ 𝑒′
1

(𝑒1, 𝑒2) ↦ (𝑒′
1, 𝑒2) Tuple-Left

𝑒2 ↦ 𝑒′
2

(𝑒1, 𝑒2) ↦ (𝑒1, 𝑒′
2) Tuple-Righ

𝑒1 ↦ 𝑒′
1

if 𝑒1 then 𝑒2 else 𝑒3 ↦ if 𝑒′
1 then 𝑒2 else 𝑒3

EIf

if true then 𝑒2 else 𝑒3 ↦ 𝑒2
EIf-TRue

if false then 𝑒2 else 𝑒3 ↦ 𝑒3
EIf-False

𝑒1 ↦ 𝑒′
1

𝑒1 𝑒2 ↦ 𝑒′
1 𝑒2

EApp
𝑒2 ↦ 𝑒′

2
𝑒1 𝑒2 ↦ 𝑒1 𝑒′

2
EApp (𝜆𝑥.𝑒1)𝑒2 ↦ [𝑒2/𝑥]𝑒1

EApp

Fst((𝑒1, 𝑒2)) ↦ 𝑒1
EFst

Snd((𝑒1, 𝑒2)) ↦ 𝑒2
ESnd

𝑒 ↦ 𝑒′

Fst(𝑒) ↦ Fst(𝑒′) EFst
𝑒 ↦ 𝑒′

Snd(𝑒) ↦ Snd(𝑒′) ESnd

Iter(𝑒1, 𝑒2,Zero) ↦ 𝑒1
EIteR

Iter(𝑒1, 𝑒2, Suc(𝑒3)) ↦ 𝑒2 Iter(𝑒1, 𝑒2, 𝑒3) EIteR

𝑒3 ↦ 𝑒′
3

Iter(𝑒1, 𝑒2, 𝑒3) ↦ Iter(𝑒1, 𝑒2, 𝑒′
3) EIteR

Figure 4.2: Small-step semantics of L6

Context

Environment should be defined in L6 since variables are available now, a list of variables can be
looked up in the context when constructing lambda calculation.

Look up function

A look-up function is needed in the process when a variable needs to compare to the existed
variables in the context: It returns a Maybe type, if the variable get the match to the current
variable in the environment, then returns the expression. If it is not a match, then exclude the
current variable and look up in the rest of the environment again, a recursive search is constructed.
If finally no variable matches, then a Nothing should be returned.
An extension in context is also available, simply using snoc here, which likes cons but saving items
in a reverse order:

21

Zero ⇓ Zero
ZeRo

𝑒 ⇓ 𝑒′ 𝑒′ 𝑣𝑎𝑙
Suc(𝑒) ⇓ Suc(𝑒′) Suc

true ⇓ true
TRue

false ⇓ false
false

𝑒1 ⇓ true 𝑒2 ⇓ 𝑒′
2 𝑒′

2 𝑣𝑎𝑙
if 𝑒1 then 𝑒2 else 𝑒3 ⇓ 𝑒′

2
EIf-TRue

𝑒1 ⇓ false 𝑒3 ⇓ 𝑒′
3 𝑒′

3 𝑣𝑎𝑙
if 𝑒1 then 𝑒2 else 𝑒3 ⇓ 𝑒′

3
EIf-False

𝑒3 ⇓ Zero 𝑒1 ⇓ 𝑒′
1 𝑒′

1 𝑣𝑎𝑙
Iter(𝑒1, 𝑒2, 𝑒3) ⇓ 𝑒′

1
EIteR-ZeRo

𝑒3 ⇓ Suc(𝑒′
3) 𝑒2 Iter(𝑒1, 𝑒2, 𝑒′

3) ⇓ 𝑒4 𝑒4 𝑣𝑎𝑙
Iter(𝑒1, 𝑒2, 𝑒3) ⇓ 𝑒4

EIteR

∗ ⇓ ∗ EUnit
𝑒1 ⇓ 𝑒′

1 𝑒2 ⇓ 𝑒′
2 𝑒′

1 𝑣𝑎𝑙 𝑒′
2 𝑣𝑎𝑙

(𝑒1, 𝑒2) ⇓ (𝑒′
1, 𝑒′

2) ETuple

𝑒 ⇓ (𝑒1, 𝑒2) 𝑒1 𝑣𝑎𝑙
Fst(𝑒) ⇓ 𝑒1

Fst
𝑒 ⇓ (𝑒1, 𝑒2) 𝑒2 𝑣𝑎𝑙

Snd(𝑒) ⇓ 𝑒2
Snd

𝜆(𝑒1 ∶ 𝐴).𝑒2 ⇓ 𝜆(𝑒1 ∶ 𝐴).𝑒2
Elam

𝑒1 ⇓ 𝜆(𝑥 ∶ 𝐴).𝑒
𝑒1 𝑒2 ⇓ [𝑒2/𝑥]𝑒 EApp

Figure 4.3: Big-step semantics of L6

data Ty
= TNat
| TBool
| TUnit
| TProd Ty Ty
| TFun Ty Ty

Figure 4.4: Type defination in L6

data Ctx
= Emp
| Snoc Ctx (Name , Ty)

Figure 4.5: Expression definition L6

lookupCtx : : Name −> Ctx −> Maybe Ty

Figure 4.6: Defination of lookupCtx

22

ex tendCtx : : Name −> Ty −> Ctx −> Ctx
ex tendCtx x ty c t x = Snoc c t x (x , ty)

Figure 4.7: Definition of extended context

Expression

Expressions are always the core part of the language, they consist all the basic expressions user
need. In L6, EAdd and EMul are dropped from the abstract syntax tree because they can be repre-
sented by the recursive expression. They are later shown in implementation part.
The deriving part needs Generic and NFData because later on a benchmark performance will need
these expressions evaluated, so instcance should be created here.

data Exp
= EZero
| ESucc Exp
| ETrue
| E F a l s e
| E I f Exp Exp Exp
| EUnit
| ETuple Exp Exp
| EF s t Exp
| ESnd Exp
| EVar Name −− v a r i a b l e s
| ELam Name Ty Exp −− a b s t r a c t i o n
| EApp Exp Exp −− a p p l i c a t i o n
| E I t e r Exp Exp Exp

Figure 4.8: Expression in L6

Reduction rules

Evaluate the Lambda term by processing several steps of substitution. There are three rules in
Lambda calculus, alpha equivalence, beta-reduction and Eta-reduction, these three work together
to make evaluation process working properly.

s u b s t : : Name −> Exp −> Exp −> Exp

Figure 4.9: General type of Reduction rules in L6

Substitution rules is a trick to make expressions much tidier and simpler and easier to compute,
which is an identity transformation and remains the value of the original expression.

23

4.1.5 Function Testing

An implementation in L6 is conducted by several basic and higher order functions, every one of
them can be defined recursively, which Iter maximum its usage in the calculation. They are also
implemented in L6 to test the ability of our language in constructing primitive recursion.

IsZero

isZero ∶∶ Nat → Bool

isZero = 𝜆(𝑛 ∶ Nat).Iter(true, 𝜆(𝑏 ∶ Bool).false, 𝑛)

IsZero is simply check if the input of the Nat is Zero or not. A traditional Haskell function is used
to verify a natural number, if it is a Zero, then after evaluate, it returns true, if not, returns false.

Pred

predExp ∶∶ Nat → Nat

predExp = 𝜆(𝑛 ∶ Nat).Fst(Iter((Zero,Zero), 𝜆(𝑡 ∶ (Nat × Nat)).(Snd(𝑡), Suc(Snd(𝑡))), 𝑛))
Pred is simply decreasing numbers by 1, which is the reverse of the Succ, it uses primitive recursion,
which use tuples to select recursive needed number.
If the input is n , then it helps applies the second parameters 𝑛 times to the initial tuple, which is
(0, 0), after one time, the result will be (0, 1), second time the result will be (1, 2), third time the
result will be (2, 3), so on so forth, at the end the result will be (𝑛 − 1, 𝑛), and we select the first
item of the tuple to get the final result. Please notice that we are working on natural numbers, so
if the input is 0, the result will still be 0.

Add

addExp ∶∶ Nat → (Nat → Nat)

addExp = 𝜆(𝑛 ∶ Nat).𝜆(𝑚 ∶ Nat).Iter(𝑚, 𝜆(𝑡 ∶ Nat).Suc(𝑡), 𝑛)
Add is designed to take two Nat inputs and calculate the sum of them. It has the type of

Nat → (Nat → Nat)

in our design, which follows the Haskell function right combination rules. The idea of addition is
a repeated Suc, for example, if we input m and n, it applies Suc to the input 𝑛 for 𝑚 times.
Note that doubleExp has been implemented in our project, too. It works as the same way as
addExp does, it applies Suc to the input 𝑛 for 𝑛 times.

24

Fib

fibExp ∶∶ Nat → Nat

fibTmp = 𝜆(𝑛 ∶ Nat).Iter((Zero, Suc(Zero)), 𝜆(𝑡 ∶ (Nat × Nat)).(Snd(𝑡), addExp Fst(𝑡) Snd(𝑡)), 𝑛)

fibExp = 𝜆(𝑚 ∶ Nat).Fst(fibTmp 𝑚)
Fib is the construction on Fibonacci numbers, the recursive calculation is easily becoming really
time-consuming, so during the test we only generate numbers lower than 10. Here the addExp is
used to calculate, the idea is to maintain a list of tuples : (0,1) (1,1) (1,2) (2,3) (3,5) … and the first
column of the tuple list is retrieved after construction which is the Fibonacci number we want.

Mul

mulExp ∶∶ Nat → (Nat → Nat)

mulExp = 𝜆(𝑛 ∶ Nat).Iter(Zero, addExp 𝑚, 𝑛)
Mul is the multiplication, which is constructed based on addExp, the idea of multiplication is to
transform it to addition, for example m*n will be added m n-1 times and finally add m itself.

Expo

expoExp ∶∶ Nat → (Nat → Nat)

expoExp = 𝜆(𝑛 ∶ Nat).𝜆(𝑚 ∶ Nat).Iter(Suc(Zero),mulExp 𝑛, 𝑚)
Expo is the function of exponentiation, the idea is similar to Mul, exponentiation is constructed
by multiple several times, for example, m**n is multiple m n times which will get the result of the
exponential.

Tet

tetExp ∶∶ Nat → (Nat → Nat)

tetExp = 𝜆(𝑎 ∶ Nat).𝜆(𝑛 ∶ Nat).Iter(Suc(Zero), expoExp 𝑎, 𝑛)
Tetration is a similar to exponential function, it is based on iterated, or repeated, exponentiation.
It will increase rapidly, which the test cases can not be too big, or it will take a long time.

Factorial

facExp ∶∶ Nat → (Nat → Nat)

facExp2 = 𝜆(𝑛 ∶ Nat).Iter((Zero, Suc(Zero)), 𝜆(𝑡 ∶ (Nat × Nat)).(Suc(Fst(𝑡)),mulExp Suc(Fst(𝑡)) Snd(𝑡)), 𝑛)

facExp = 𝜆(𝑚 ∶ Nat).Snd(facExp2 𝑚)

25

Factorial function is easier than fibnacii function. It has only one recursive call, for example, input
𝑛, then during the iteration and decrease of 𝑛, a sequence of 𝑛×(𝑛−1)×(𝑛−2) ⋯ multiplication
is constructed and finally applied to 1.

Ackermann

Ackermann function was published by Wilhelm Ackermann in 1928 [Ack28]. The original Acker-
mann function defines with three paramters, however, the most common one that easy to under-
stand is defined as follows:

A(0, 𝑛) = 𝑛 + 1

A(𝑚 + 1, 0) = A(𝑚, 1)

A(𝑚 + 1, 𝑛 + 1) = A(𝑚,A(𝑚 + 1, 𝑛))

We constructed it in system T in the following way:

ackerExp ∶∶ Nat → (Nat → Nat)

compExp = 𝜆(𝑡 ∶ ((Nat → Nat) × (Nat → Nat))).𝜆(𝑥 ∶ Nat).Fst(𝑡) Snd(𝑡) 𝑥

itExp = 𝜆(𝑓 ∶ (Nat → Nat)).𝜆(𝑛 ∶ Nat).Iter(𝜆(𝑥 ∶ Nat).𝑥, 𝜆(𝑔 ∶ (Nat → Nat)).compExp (𝑓, 𝑔), 𝑛)

sExp = 𝜆(𝑚 ∶ Nat).Suc(𝑚)

rExp = 𝜆(𝑓 ∶ (Nat → Nat)).𝜆(𝑚 ∶ Nat).itExp 𝑓 𝑚 𝑓 Suc(Zero)

ackerExp = 𝜆(𝑛 ∶ Nat).Iter(sExp, rExp, 𝑛)

Ackermann function is the simplest example of a well-defined total function which is computable
but not primitive recursive, providing a counterexample to the belief in the early 1900s that every
computable function was also primitive recursive. It grows faster than an exponential function,
or even a multiple exponential function [Wei96].

A(𝑚, 𝑛)is the most complicated one among all the functions we used to test L6. It grows really
fast and consumes a lot of memory, we should be careful when we do the test on this particular
function. Ackermann function is very special, it is constructed by lexicographic induction on the
pair of arguments. Either 𝑚 decreases or 𝑛 decreases iteratively [Har16]. Our implementation is
slow due to plenty of recursion in A(𝑚, 𝑛), we need to optimize the recursion by loops which is
done by GHC optimizer.

It is a higher-order primitive recursive function, and definable in system T, we have to realize that
every A(𝑚, 𝑛) can be written as 𝑛 iterations of A(𝑚 − 1, −) finally applies to A(𝑚 − 1, 1). This
triggers an idea of using a function composition, which means in recursion, we could recursively
apply A(𝑚 − 1, −) until the last A(𝑚 − 1, 1), compExp compose the 𝑓 and 𝑔, 𝑔 represent the 𝑓(1)
in our design. Since composition is based on two function, the first parameter of the recursion
should be an identity function.

26

In our design, compExp is the composition of two functions, itExp is used to control how many
iterations A(𝑚 − 1, −) applies. sExp is the Suc function and rExp is using itExp and passed the
final 𝑓(1) to it.

27

Chapter 5

Evaluation

5.1 Tests

Property tests

What property test do is generating random expressions under the rules developer writes and
check if the random generated examples satisfied a specific property the program should fulfil.
Here tests are using Testy test framework and every test goes parallel, in L6 test are applied to
Big-step and Small-step separately. In each one of them, there are four different property tests,
which conclude

• Progress: Type-inferable expressions always reduce to a value.

• Type-preservation: Type-inferable expressions reduce to a value of the same type.

• Progress: Well-typed expressions always reduce to a value.

• Type-preservation: Well-typed expressions reduce to a value of the same type.

all tests have been tested in an acceptable number of cases and time. Sometimes calculation goes
huge and memory consuming, so limit the number and time of test is important. Tasty is good
enough to provide such features for user to make the control. In addition, arbitrary expression

QC . withMaxSuccess 1 _000_000 −− t e s t 1 m i l l i o n t im e s
QC . wi th in 5 _000_000 −− t im e ou t a f t e r 5 s

Figure 5.1: General way to control Property Tests in L6

can be defined separately in Tasty and it is very helpful on constructing well-typed expression.

28

Unit tests

Unit tests are flexible as it is from L1 to L5, any specific tests you want to run should be put into a
unit test, sometimes unit test is the quickest way to check if the specific expression is success or
not.

5.2 Benchmark

Benchmark is used to mainly test and compare the efficiency of the example programs written in
traditional Haskell language and our L6 language. There are two other tests added to the bench-
mark, one is function eval, opt and opt2 in L1 which are optimizers constructed in different ways,
they all worked well but with different efficiency. Another one is Add in L5 and L6, in L5, addition
is primitive, and in L6 recrusivly constructed add is used.
Also O0 and O2 have been applied to see the difference, O0 is literally turn off all the optimization
while O2 on the other side apply as much non-dangerous optimization as possible to quickly gen-
erate the code even during compile it takes longer time.
Figure 5.2 is the general result of the function performance in O2, Mean means mean excuation
time of all the loops, MeanLB means Mean lower bound, MeanUB means Mean upper bound, Std-
dev means standard deviation, StddevLB means standard deviation lower bound, StddevUBmeans
standard upper bound.
From figure 5.2 and appendix B we could see that in L1 even we tried optimizer, it still consumes
much more time than original Haskell one. Small-step evaluation takes less time than Big-step
evaluation isZero, predExp, fibExp, but take longer time than Big-step in addExp, doubleExp,
expoExp, facExp, mulExp, tetExp, ackerExp.

Please note that the same function can be compared horizontally, but different functions compare
cannot compare horizontally because due to computation time limit reason, we use different cases
between different functions.

29

Figure 5.2: Funtion general benchmark result

30

Chapter 6

Conclusion

In our implementation, system T is successfully realized in L6 with multiple types. The recursive
lambada calculus is the main point to construct function, it is easier and tidier for developers to
write. Multiple functions have been tested by tasty and got successful result.

However, the language we built still need further work to do to improve the efficiency. Due to
the result mentioned in benchmark, O2 optimization of Haskell has already been put into use, but
time consumption of Small-step and Big-step stays high. The reason Big-step and Small-step have
difference time-consuming performance in different function still needs to discover. In addition,
intrinsic version of L6 still need to be done in lambda expressions part, the lookup judgement has
been lifted to the 𝐼𝑛 type, so we can only construct bound variables. To extract the variable name
from an instance of In ctx 𝑏, we will need to demote the 𝑏 to a Bind and pattern match on it.

Right now, there are some version conflicts between our language environment and Liquidhaskell
requirements, but there are potential chance to work with Liquidhaskell in our language to do
verification in algorithm in the future.

31

Bibliography

[Ack28] W. Ackermann. “Zum Hilbertschen Aufbau der reellen Zahlen.” In: Math. Ann. 99
(1928), pp. 118–133.

[Göd58] Von Kurt Gödel. “ÜBER EINE BISHER NOCH NICHT BENÜTZTE ERWEITERUNG
DES FINITEN STANDPUNKTES.” In:Dialectica 12.3-4 (1958), pp. 280–287. doi:https:
//doi.org/10.1111/j.1746- 8361.1958.tb01464.x. eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.
1746 - 8361 . 1958 . tb01464 . x. uRl: https : / / onlinelibrary .
wiley.com/doi/abs/10.1111/j.1746-8361.1958.tb01464.x.

[Gog75] Joseph A Goguen. “Semantics of computation.” In: Category theory applied to compu-
tation and control. Springer, 1975, pp. 151–163.

[Mil78] Robin Milner. “A theory of type polymorphism in programming.” In: Journal of Com-
puter and System Sciences 17.3 (1978), pp. 348–375. issn: 0022-0000. doi: https:
//doi.org/10.1016/0022-0000(78)90014-4. uRl: https://www.
sciencedirect.com/science/article/pii/0022000078900144.

[Hal+92] Cordelia Hall et al. “The Glasgow Haskell Compiler: A Retrospective.” In: Jan. 1992,
pp. 62–71. isbn: 978-3-540-19820-8. doi: 10.1007/978-1-4471-3215-8_6.

[Aab96] A.A. Aaby. Introduction to Programming Languages. 1996. uRl: https://books.
google.co.uk/books?id=WT6fMwEACAAJ.

[Wei96] Eric W. Weisstein. Ackermann Function. https://archive.lib.msu.edu/
crcmath/math/math/a/a044.htm. Accessed: 2021-12-11. 1996.

[Rey00] John C. Reynolds. “The Meaning of Types From Intrinsic to Extrinsic Semantics.” In:
BRICS Report Series 7.32 (June 2000). doi: 10.7146/brics.v7i32.20167.
uRl: https://tidsskrift.dk/brics/article/view/20167.

[Jon03] Joel Jones. “Abstract Syntax Tree Implementation Idioms.” In: Pattern Languages of
Program Design (2003). Proceedings of the 10th Conference on Pattern Languages of
Programs (PLoP2003) http://hillside.net/plop/plop2003/papers.html. uRl: http://
hillside.net/plop/plop2003/Papers/Jones-ImplementingASTs.
pdf.

[Pfe04] Frank Pfenning. Lecture Notes on Bidirectional Type Checking. Oct. 2004.
[Har05] Robert Harper. “Mechanizing the Meta-Theory of Programming Languages.” In: SIG-

PLAN Not. 40.9 (Sept. 2005), p. 240. issn: 0362-1340. doi: 10.1145/1090189.
1086396. uRl: https://doi.org/10.1145/1090189.1086396.

[NN07] H.R. Nielson and F. Nielson. Semantics with Applications: An Appetizer. Undergrad-
uate Topics in Computer Science. Springer London, 2007. isbn: 9781846286926. uRl:
https://books.google.co.uk/books?id=oPi0yERDUeYC.

32

https://doi.org/https://doi.org/10.1111/j.1746-8361.1958.tb01464.x
https://doi.org/https://doi.org/10.1111/j.1746-8361.1958.tb01464.x
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1746-8361.1958.tb01464.x
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1746-8361.1958.tb01464.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1746-8361.1958.tb01464.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1746-8361.1958.tb01464.x
https://doi.org/https://doi.org/10.1016/0022-0000(78)90014-4
https://doi.org/https://doi.org/10.1016/0022-0000(78)90014-4
https://www.sciencedirect.com/science/article/pii/0022000078900144
https://www.sciencedirect.com/science/article/pii/0022000078900144
https://doi.org/10.1007/978-1-4471-3215-8_6
https://books.google.co.uk/books?id=WT6fMwEACAAJ
https://books.google.co.uk/books?id=WT6fMwEACAAJ
https://archive.lib.msu.edu/crcmath/math/math/a/a044.htm
https://archive.lib.msu.edu/crcmath/math/math/a/a044.htm
https://doi.org/10.7146/brics.v7i32.20167
https://tidsskrift.dk/brics/article/view/20167
http://hillside.net/plop/plop2003/Papers/Jones-ImplementingASTs.pdf
http://hillside.net/plop/plop2003/Papers/Jones-ImplementingASTs.pdf
http://hillside.net/plop/plop2003/Papers/Jones-ImplementingASTs.pdf
https://doi.org/10.1145/1090189.1086396
https://doi.org/10.1145/1090189.1086396
https://doi.org/10.1145/1090189.1086396
https://books.google.co.uk/books?id=oPi0yERDUeYC

[Zil15] Noam Zilberstein. CIS 194: Introduction to Haskell (Spring 2015):GADTs in Action. Apr.
2015.

[Har16] Robert Harper. Practical foundations for programming languages, second edition. Jan.
2016, pp. 1–476. doi: 10.1017/CBO9781316576892.

[Owe+16] Scott Owens et al. “Functional Big-Step Semantics.” In: Proceedings of the 25th Euro-
pean Symposium on Programming Languages and Systems - Volume 9632. Berlin, Hei-
delberg: Springer-Verlag, 2016, pp. 589–615. isbn: 9783662494974. doi: 10.1007/
978-3-662-49498-1_23. uRl: https://doi.org/10.1007/978-3-
662-49498-1_23.

[Chr19] David Thrane Christiansen. Checking Dependent Types with Normalization by Evalua-
tion: A Tutorial (Haskell Version). May 2019.

33

https://doi.org/10.1017/CBO9781316576892
https://doi.org/10.1007/978-3-662-49498-1_23
https://doi.org/10.1007/978-3-662-49498-1_23
https://doi.org/10.1007/978-3-662-49498-1_23
https://doi.org/10.1007/978-3-662-49498-1_23

Appendix A

Benchmark result

34

criterion performance measurements

overview

eval / eval

estimate
OLS regression 633 μs
R² goodness-of-fit 0.998
Mean execution time 639 μs
Standard deviation 24.6 μs

Outlying measurements have a moderate (30.3%) effect on estimated standard deviation.

lower bound upper bound
624 μs 641 μs
0.997 0.999
633 μs 647 μs
20.4 μs 32.9 μs

35

eval / opt

estimate
OLS regression 6.30 ms
R² goodness-of-fit 0.997
Mean execution time 6.59 ms
Standard deviation 1.69 ms

Outlying measurements have a severe (91.4%) effect on estimated standard deviation.

eval / opt2

estimate
OLS regression 813 μs
R² goodness-of-fit 0.999
Mean execution time 819 μs
Standard deviation 30.4 μs

Outlying measurements have a moderate (28.0%) effect on estimated standard deviation.

isZero / isZeroHs

estimate
OLS regression 9.19 ns
R² goodness-of-fit 0.990
Mean execution time 9.15 ns
Standard deviation 1.02 ns

Outlying measurements have a severe (93.8%) effect on estimated standard deviation.

lower bound upper bound
6.13 ms 6.42 ms
0.994 0.999
6.29 ms 7.77 ms
147 μs 3.55 ms

lower bound upper bound
804 μs 823 μs
0.998 0.999
812 μs 831 μs
18.8 μs 46.6 μs

lower bound upper bound
8.87 ns 9.49 ns
0.986 0.994
8.84 ns 9.49 ns
808 ps 1.39 ns

36

isZero / *isZeroExp

estimate
OLS regression 101 ns
R² goodness-of-fit 0.999
Mean execution time 101 ns
Standard deviation 3.29 ns

Outlying measurements have a severe (50.0%) effect on estimated standard deviation.

isZero / isZeroExp

estimate
OLS regression 171 ns
R² goodness-of-fit 0.998
Mean execution time 170 ns
Standard deviation 6.08 ns

Outlying measurements have a severe (53.9%) effect on estimated standard deviation.

pred / predHs

estimate
OLS regression 19.7 ns
R² goodness-of-fit 0.976
Mean execution time 21.4 ns
Standard deviation 4.51 ns

Outlying measurements have a severe (98.2%) effect on estimated standard deviation.

lower bound upper bound
101 ns 102 ns
0.999 1.00
99.9 ns 102 ns
2.57 ns 4.36 ns

lower bound upper bound
169 ns 174 ns
0.996 1.00
169 ns 173 ns
3.65 ns 11.6 ns

lower bound upper bound
18.6 ns 21.0 ns
0.969 0.984
20.3 ns 22.9 ns
3.42 ns 6.18 ns

37

pred / *predExp

estimate
OLS regression 3.93 μs
R² goodness-of-fit 1.00
Mean execution time 3.94 μs
Standard deviation 102 ns

Outlying measurements have a moderate (30.9%) effect on estimated standard deviation.

pred / predExp

estimate
OLS regression 205 μs
R² goodness-of-fit 0.999
Mean execution time 206 μs
Standard deviation 5.65 μs

Outlying measurements have a moderate (22.4%) effect on estimated standard deviation.

fib / fibHs

estimate
OLS regression 2.73 μs
R² goodness-of-fit 0.999
Mean execution time 2.76 μs
Standard deviation 112 ns

Outlying measurements have a severe (53.7%) effect on estimated standard deviation.

lower bound upper bound
3.91 μs 3.97 μs
0.999 1.00
3.92 μs 3.99 μs
79.0 ns 136 ns

lower bound upper bound
203 μs 207 μs
0.999 1.00
204 μs 208 μs
4.72 μs 7.23 μs

lower bound upper bound
2.71 μs 2.77 μs
0.999 0.999
2.73 μs 2.80 μs
84.3 ns 177 ns

38

fib / *fibExp

estimate
OLS regression 1.80 ms
R² goodness-of-fit 1.00
Mean execution time 1.81 ms
Standard deviation 30.3 μs

Outlying measurements have a slight (6.35%) effect on estimated standard deviation.

fib / fibExp

estimate
OLS regression 32.5 ms
R² goodness-of-fit 0.865
Mean execution time 30.9 ms
Standard deviation 5.09 ms

Outlying measurements have a severe (63.3%) effect on estimated standard deviation.

add / addHs

estimate
OLS regression 104 ns
R² goodness-of-fit 0.998
Mean execution time 104 ns
Standard deviation 5.39 ns

Outlying measurements have a severe (71.9%) effect on estimated standard deviation.

lower bound upper bound
1.79 ms 1.81 ms
1.00 1.00
1.80 ms 1.82 ms
22.5 μs 38.4 μs

lower bound upper bound
28.7 ms 43.2 ms
0.768 0.999
29.4 ms 34.9 ms
798 μs 9.00 ms

lower bound upper bound
103 ns 107 ns
0.996 0.999
103 ns 106 ns
3.71 ns 7.96 ns

39

add / *addExp

estimate
OLS regression 3.66 μs
R² goodness-of-fit 0.998
Mean execution time 3.69 μs
Standard deviation 64.1 ns

Outlying measurements have a moderate (17.0%) effect on estimated standard deviation.

add / addExp

estimate
OLS regression 2.01 μs
R² goodness-of-fit 0.999
Mean execution time 2.02 μs
Standard deviation 68.8 ns

Outlying measurements have a moderate (45.7%) effect on estimated standard deviation.

double / doubleHs

estimate
OLS regression 89.4 ns
R² goodness-of-fit 0.999
Mean execution time 89.9 ns
Standard deviation 3.91 ns

Outlying measurements have a severe (64.9%) effect on estimated standard deviation.

lower bound upper bound
3.64 μs 3.69 μs
0.997 0.999
3.67 μs 3.71 μs
48.4 ns 95.4 ns

lower bound upper bound
1.99 μs 2.03 μs
0.999 1.00
2.00 μs 2.04 μs
54.4 ns 90.6 ns

lower bound upper bound
88.5 ns 90.3 ns
0.998 1.00
88.8 ns 91.2 ns
2.59 ns 5.66 ns

40

double / *doubleExp

estimate
OLS regression 3.22 μs
R² goodness-of-fit 0.999
Mean execution time 3.29 μs
Standard deviation 224 ns

Outlying measurements have a severe (76.5%) effect on estimated standard deviation.

double / doubleExp

estimate
OLS regression 1.58 μs
R² goodness-of-fit 0.997
Mean execution time 1.59 μs
Standard deviation 168 ns

Outlying measurements have a severe (89.5%) effect on estimated standard deviation.

expo / expoHs

estimate
OLS regression 159 ns
R² goodness-of-fit 0.999
Mean execution time 160 ns
Standard deviation 7.42 ns

Outlying measurements have a severe (66.5%) effect on estimated standard deviation.

lower bound upper bound
3.20 μs 3.26 μs
0.998 0.999
3.25 μs 3.41 μs
98.6 ns 365 ns

lower bound upper bound
1.56 μs 1.60 μs
0.993 1.00
1.57 μs 1.70 μs
41.2 ns 351 ns

lower bound upper bound
158 ns 161 ns
0.998 0.999
158 ns 163 ns
5.27 ns 11.3 ns

41

expo / *expoExp

estimate
OLS regression 25.9 μs
R² goodness-of-fit 1.00
Mean execution time 25.9 μs
Standard deviation 579 ns

Outlying measurements have a moderate (20.5%) effect on estimated standard deviation.

expo / expoExp

estimate
OLS regression 12.9 μs
R² goodness-of-fit 1.00
Mean execution time 13.0 μs
Standard deviation 442 ns

Outlying measurements have a moderate (40.6%) effect on estimated standard deviation.

fac / facHs

estimate
OLS regression 49.9 ns
R² goodness-of-fit 0.999
Mean execution time 50.6 ns
Standard deviation 2.60 ns

Outlying measurements have a severe (73.1%) effect on estimated standard deviation.

lower bound upper bound
25.8 μs 26.0 μs
1.00 1.00
25.8 μs 26.1 μs
406 ns 984 ns

lower bound upper bound
12.8 μs 12.9 μs
0.999 1.00
12.9 μs 13.1 μs
258 ns 722 ns

lower bound upper bound
49.2 ns 50.5 ns
0.998 0.999
50.0 ns 51.5 ns
1.65 ns 4.36 ns

42

fac / *facExp

estimate
OLS regression 31.8 ms
R² goodness-of-fit 1.00
Mean execution time 31.9 ms
Standard deviation 355 μs

Outlying measurements have a slight (5.54%) effect on estimated standard deviation.

fac / facExp

estimate
OLS regression 2.36 ms
R² goodness-of-fit 0.935
Mean execution time 2.65 ms
Standard deviation 800 μs

Outlying measurements have a severe (95.9%) effect on estimated standard deviation.

mul / mulHs

estimate
OLS regression 2.55 μs
R² goodness-of-fit 0.997
Mean execution time 2.59 μs
Standard deviation 294 ns

Outlying measurements have a severe (90.6%) effect on estimated standard deviation.

lower bound upper bound
31.7 ms 32.0 ms
1.00 1.00
31.8 ms 32.2 ms
157 μs 652 μs

lower bound upper bound
2.27 ms 2.43 ms
0.846 0.998
2.48 ms 3.07 ms
426 μs 1.34 ms

lower bound upper bound
2.52 μs 2.57 μs
0.992 0.999
2.53 μs 2.77 μs
84.2 ns 598 ns

43

mul / *mulExp

estimate
OLS regression 7.51 ms
R² goodness-of-fit 1.00
Mean execution time 7.56 ms
Standard deviation 79.7 μs

Outlying measurements have a slight (2.85%) effect on estimated standard deviation.

mul / mulExp

estimate
OLS regression 37.4 μs
R² goodness-of-fit 0.999
Mean execution time 37.6 μs
Standard deviation 1.39 μs

Outlying measurements have a moderate (40.8%) effect on estimated standard deviation.

tet / tetHs

estimate
OLS regression 452 ns
R² goodness-of-fit 0.999
Mean execution time 452 ns
Standard deviation 13.8 ns

Outlying measurements have a moderate (43.4%) effect on estimated standard deviation.

lower bound upper bound
7.46 ms 7.57 ms
1.00 1.00
7.53 ms 7.59 ms
58.4 μs 118 μs

lower bound upper bound
37.0 μs 37.8 μs
0.999 1.00
37.3 μs 38.3 μs
878 ns 2.29 μs

lower bound upper bound
448 ns 457 ns
0.999 0.999
448 ns 457 ns
11.9 ns 16.9 ns

44

tet / *tetExp

estimate
OLS regression 218 μs
R² goodness-of-fit 0.998
Mean execution time 218 μs
Standard deviation 6.58 μs

Outlying measurements have a moderate (25.5%) effect on estimated standard deviation.

tet / tetExp

estimate
OLS regression 46.0 μs
R² goodness-of-fit 0.790
Mean execution time 45.5 μs
Standard deviation 19.4 μs

Outlying measurements have a severe (99.2%) effect on estimated standard deviation.

acker / ackerHs

estimate
OLS regression 453 ns
R² goodness-of-fit 0.999
Mean execution time 456 ns
Standard deviation 18.7 ns

Outlying measurements have a severe (58.4%) effect on estimated standard deviation.

lower bound upper bound
214 μs 223 μs
0.996 1.00
216 μs 220 μs
4.46 μs 10.4 μs

lower bound upper bound
39.8 μs 55.0 μs
0.735 0.943
40.9 μs 54.0 μs
11.1 μs 26.8 μs

lower bound upper bound
449 ns 457 ns
0.999 1.00
452 ns 462 ns
13.9 ns 27.3 ns

45

acker / *ackerExp

estimate
OLS regression 68.6 μs
R² goodness-of-fit 0.999
Mean execution time 68.7 μs
Standard deviation 1.96 μs

Outlying measurements have a moderate (27.0%) effect on estimated standard deviation.

acker / ackerExp

estimate
OLS regression 47.9 μs
R² goodness-of-fit 0.999
Mean execution time 48.2 μs
Standard deviation 1.38 μs

Outlying measurements have a moderate (28.3%) effect on estimated standard deviation.

Add in L5 VS Add in L6 / L5 Add

estimate
OLS regression 787 ns
R² goodness-of-fit 0.999
Mean execution time 795 ns
Standard deviation 31.0 ns

Outlying measurements have a severe (55.0%) effect on estimated standard deviation.

lower bound upper bound
68.0 μs 69.2 μs
0.999 1.00
68.2 μs 69.4 μs
1.45 μs 2.87 μs

lower bound upper bound
47.5 μs 48.3 μs
0.999 1.00
47.9 μs 48.8 μs
1.04 μs 2.19 μs

lower bound upper bound
776 ns 795 ns
0.998 0.999
786 ns 805 ns
24.6 ns 43.3 ns

46

Add in L5 VS Add in L6 / *L6 Add

estimate
OLS regression 5.90 μs
R² goodness-of-fit 0.830
Mean execution time 4.80 μs
Standard deviation 2.24 μs

Outlying measurements have a severe (99.4%) effect on estimated standard deviation.

Add in L5 VS Add in L6 / L6 Add

estimate
OLS regression 2.11 μs
R² goodness-of-fit 0.977
Mean execution time 2.48 μs
Standard deviation 811 ns

Outlying measurements have a severe (98.9%) effect on estimated standard deviation.

understanding this report
In this report, each function benchmarked by criterion is assigned a section of its own.

The chart on the left is a kernel density estimate (also known as a KDE) of time measurements. This graphs the probability of any
given time measurement occurring. A spike indicates that a measurement of a particular time occurred; its height indicates how often
that measurement was repeated.

The chart on the right is the raw data from which the kernel density estimate is built. The x-axis indicates the number of loop
iterations, while the y-axis shows measured execution time for the given number of loop iterations. The line behind the values is the
linear regression estimate of execution time for a given number of iterations. Ideally, all measurements will be on (or very near) this
line. The transparent area behind it shows the confidence interval for the execution time estimate.

Under the charts is a small table. The first two rows are the results of a linear regression run on the measurements displayed in the right-
hand chart.

OLS regression indicates the time estimated for a single loop iteration using an ordinary least-squares regression model. This
number is more accurate than the mean estimate below it, as it more effectively eliminates measurement overhead and other
constant factors.

R2; goodness-of-fit is a measure of how accurately the linear regression model fits the observed measurements. If the
measurements are not too noisy, R2; should lie between 0.99 and 1, indicating an excellent fit. If the number is below 0.99,
something is confounding the accuracy of the linear model.

Mean execution time and standard deviation are statistics calculated from execution time divided by number of iterations.

We use a statistical technique called the bootstrap to provide confidence intervals on our estimates. The bootstrap-derived upper and
lower bounds on estimates let you see how accurate we believe those estimates to be.

lower bound upper bound
4.92 μs 6.90 μs
0.748 0.915
4.29 μs 5.77 μs
1.47 μs 3.56 μs

lower bound upper bound
2.05 μs 2.19 μs
0.962 0.988
2.30 μs 2.82 μs
575 ns 1.16 μs

47

A noisy benchmarking environment can cause some or many measurements to fall far from the mean. These outlying measurements can
have a significant inflationary effect on the estimate of the standard deviation. We calculate and display an estimate of the extent to which
the standard deviation has been inflated by outliers.

colophon
This report was created using the criterion benchmark execution and performance analysis tool.

Criterion is developed and maintained by Bryan O'Sullivan.

48

	Introduction
	Design overview
	Outline

	Background
	Typing
	Bidirectional type checking
	Operational Semantics
	Tasty
	Criterion
	Prettyprinter
	GADTs
	System T

	L3: A language with numbers and booleans
	Grammar
	Syntax of L3
	Type checking
	Semantics
	Implementation
	Testing

	Intrinsic L3

	L6: A language with many types
	Grammar
	Syntax of L6
	Type checking L6
	Symantics L6
	Implementation
	Function Testing

	Evaluation
	Tests
	Benchmark

	Conclusion
	Benchmark result

