
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Simple illustration of permutation technique
JINGREN WANG, Raina Technology, China

Permutation is an important technique in turth table based algorithm, how to permute efficiently is one of
the key problems in logic synthesis. This draft gives illustration based on some permutation functions in
mockturtule, helps students understand how permutation is performed.

1 BACKGROUND
1.1 Turth table
A turth table(TT) representation will be given here for the convinence of future illustration. The size
of the TT is determined by the number of variables, TT of a complete boolean function of 𝑛 varibles
will have the size of 2𝑛 , and there will be 22𝑛 different boolean functions can be implemented.

1.2 Mask
Informally, mask is a simple idea on "only consider information related parts", which will seperate
any unrelated information out. Mask exists in multiple areas such as network engineering, here
under the context of bit level manipulation, it is simply a way of bit extraction.

2 MAGIC MASK
When we talking about permuting variables in TT, we are referring methods using bit level masks,
in Knuth’s The Art of Programming, these kind of masks are referred to as Magic Masks. First go
through the content in file lib/kitty/kitty/detail/constants.hpp, and related unit tests cases, see if any
of the hard coded constants makes sense.

2.1 Example of 2 variables
Given two varibles 𝑎,𝑏, any complete boolean function can be represented by the TT in table 2. If a
swap happens between 𝑎 and 𝑏, the function representation will be in table 3. Obviously the second
line and the third line is sawpped due to the variable value change in the function result(TT), while
the first and last line remmained the same. The sawp is very intuitive when we look at the table,
when formalizing to a swap function, a process is given(no order is needed here for the first 3
items):

(1) Masks the unchanged line, such as the blue line in the example table 2 and 3.
(2) Retrieves the result needs left/right shift.
(3) Records how many bits are needed for the shifting.
(4) Shit the bits need to be permutated.
(5) Concatenate all changed and unchanged bits together.

More formally, under these two variables context, this will be interpreted as:

𝑚𝑢𝑛 means the mask of unchanged bits, while each one of the𝑚0 and𝑚1 represents the mask of
the bit needs to be permutated. The shift bits is 1, which means𝑚0 needs to be shifted 1 bit left and
𝑚1 needs to be shifted 1 bit right. This will result in a final formula of

𝑡𝑡𝑟𝑒𝑠 = 𝑡𝑡𝑜𝑟𝑖 &𝑚𝑢𝑛 | 𝑡𝑡𝑜𝑟𝑖 &𝑚0 ≪ 𝑛𝑠 | 𝑡𝑡𝑜𝑟𝑖 &𝑚1 ≫ 𝑛𝑠

in which 𝑡𝑡𝑟𝑒𝑠 represents the result TT, 𝑡𝑡𝑜𝑟𝑖 represents the original TT, >> and << represent the
bit level shifting, 𝑛𝑠 represents the number of shifting, here it is referring to 1.

Author’s address: Jingren Wang, jingrenwangcyber@gmail.com, Raina Technology, Hangzhou, Zhejiang, China.

, Vol. 1, No. 1, Article . Publication date: February 2025.

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

2 Jingren Wang

Table 1. Masks on permutation

𝑎3 𝑎2 𝑎1 𝑎0 𝑐𝑣

1 0 0 1 𝑚𝑢𝑛

0 0 1 0 𝑚0
0 1 0 0 𝑚1

Table 2. Original boolean function of 2 variables

𝑏 𝑎 𝑓 (𝑎, 𝑏)
0 0 𝑎0
0 1 𝑎1
1 0 𝑎2
1 1 𝑎3

Table 3. After wap of 2 variables

𝑏 𝑎 𝑓 (𝑎, 𝑏)
0 0 𝑎0
1 0 𝑎2
0 1 𝑎1
1 1 𝑎3

Table 4. Original boolean function of 3 variables

𝑐 𝑏 𝑎 𝑓𝑎,𝑏 (𝑎, 𝑏, 𝑐) 𝑓𝑎,𝑐 (𝑎, 𝑏, 𝑐)
0 0 0 𝑎0 𝑎0
0 0 1 𝑎1 𝑎1
0 1 0 𝑎2 𝑎2
0 1 1 𝑎3 𝑎3
1 0 0 𝑎4 𝑎4
1 0 1 𝑎5 𝑎5
1 1 0 𝑎6 𝑎6
1 1 1 𝑎7 𝑎7

2.2 Example of 3 variables
A function example of 3 variables is explained here just for a more detailed and clear view of
permutation, since 3 variables have various different ways of permuation, the method is the same
as 2 varibels, the original TT is represented as table 4, when permuted on variable 𝑎 and variable 𝑏,
which is the variable index 0 and 1, we have result in table 5.In addition, permute variable 𝑎 and
variable 𝑐 , we have the result in table 6. Readers should be able to manually draw the result of the
sawppimg varibles 𝑏 and variables 𝑐 .

, Vol. 1, No. 1, Article . Publication date: February 2025.

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

Simple illustration of permutation technique 3

Table 5. Swap 2 variables(𝑎,𝑏) of 3-input boolean function

𝑐 𝑏 𝑎 𝑓𝑎,𝑏 (𝑎, 𝑏, 𝑐)
0 0 0 𝑎0
0 1 0 𝑎2
0 0 1 𝑎1
0 1 1 𝑎3
1 0 0 𝑎4
1 1 0 𝑎6
1 0 1 𝑎5
1 1 1 𝑎7

Table 6. Swap 2 variables(𝑎,𝑐) of 3-input boolean function

𝑐 𝑏 𝑎 𝑓𝑎,𝑐 (𝑎, 𝑏, 𝑐)
0 0 0 𝑎0
1 0 0 𝑎4
0 1 0 𝑎2
1 1 0 𝑎6
0 0 1 𝑎1
1 0 1 𝑎5
0 1 1 𝑎3
1 1 1 𝑎7

2.3 Shift calculation
The shift value is determined by the difference of the two variables, by checking example mentioned
in section 2.1 and section 2.2, when swapping variables, if varible 𝑎 and 𝑏 have value {0, 0} or {1, 1}
before swapping, then the result will not be changed. Also note that when swapping variable 𝑎 and
𝑏 which has variable index 0 and 1, the result TT always constructed by a shift value of 1. The hint
has been given to us that every time an encounter of a value of {0, 1} or {1, 0}, the result will be
permuted.
Now, consider from index perspective, when permuting variable index 0 and index 1, the only
focus is on the last two column, and the set with value {0,1} and {1,0}, since other variables are not
changed, so the permutation can be extend to line {𝑋 , 0, 1} and line {𝑋 , 1, 0}, where 𝑋 indicates
other variables {𝑥2, 𝑥3, 𝑥4, ...}. Hence, we could say that for every number 𝑛 of varibles, the swap
between variable index 0 and variable index 1 will have a shift value(a shift distance) 𝑛𝑠 between
line {𝑋 , 0, 1} and line {𝑋 , 1, 0}, which can also be interpreted as

𝑛𝑠 = 21 − 20 = 1

since {0,1} is the value of 20 and {1,0} is the value of 21. Also, for 3 varibles, when we permute
varible index 0 and varible index 2, this create a condition for middle index to exist, so it could be
interpreted as swapping condition of {0,𝑋 ,1} and {1,𝑋 ,0}, in which 𝑋 can be and can only be varible
with index 2, {𝑋 = 𝑥1}. So the shift different between two lines with {0,𝑥1,1}, {1,𝑥1,0}, hence,

𝑛𝑠 = 22 − 20 = 3

, Vol. 1, No. 1, Article . Publication date: February 2025.

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

4 Jingren Wang

which can also be verified by the swap between 𝑎1 and 𝑎4, 𝑎3 and 𝑎6 in the table 6.
The generalized form of calculating the shift difference then becomes:

𝑛𝑠 = 2𝑖1 − 2𝑖2 , 𝑖1 ⩾ 𝑖2

This gets us the conclusion that for a pair of specific varible index 𝑖1 and 𝑖2 the 𝑛𝑠 remains the same,
no matter how much varible is involved.

2.4 Masks
Masks here is generally only for data retrival in TT, as shown in section 2.3, although 𝑛𝑠 remains the
same, with different number of varibles, the TT has different length. In lib/kitty/kitty/detail/constants.hpp,
the masks has been recorded in a “ppermutation_masks” varible. It is a 3 dimision varible which
the first dimision represents the 𝑖1 and the second dimision represents the 𝑖2, the retrived mask
contains 3 varibles, the first one is the𝑚𝑢𝑛 , the second one is the𝑚𝑝 for the first 𝑖1 TT isolation,
and the third one is𝑚𝑞 for the 𝑖2 TT isolation, which in detial,

𝑡𝑡𝑢𝑛 = 𝑡𝑡𝑜𝑟𝑖 &𝑚𝑢𝑛

𝑡𝑡𝑖1 = 𝑡𝑡𝑜𝑟𝑖 &𝑚𝑝

𝑡𝑡𝑖2 = 𝑡𝑡𝑜𝑟𝑖 &𝑚𝑞

𝑡𝑡𝑟𝑒𝑠 = 𝑡𝑡𝑢𝑛 | 𝑡𝑡𝑖1 ≪ 𝑛𝑠 | 𝑡𝑡𝑖2 ≫ 𝑛𝑠

For example, take case in table 6, the permuation of varible index 0 and index 2 can be interpreted
easily as:

𝑡𝑡𝑢𝑛 = {𝑎7, 𝑎6, 𝑎5, 𝑎4, 𝑎3, 𝑎2, 𝑎1, 𝑎0}&𝑈 𝐼𝑁𝑇 64_𝐶 (0𝑥𝑎5𝑎5𝑎5𝑎5𝑎5𝑎5𝑎5𝑎5)
𝑡𝑡𝑖1 = {𝑎7, 𝑎6, 𝑎5, 𝑎4, 𝑎3, 𝑎2, 𝑎1, 𝑎0}&𝑈 𝐼𝑁𝑇 64_𝐶 (0𝑥0𝑎0𝑎0𝑎0𝑎0𝑎0𝑎0𝑎0𝑎)
𝑡𝑡𝑖2 = {𝑎7, 𝑎6, 𝑎5, 𝑎4, 𝑎3, 𝑎2, 𝑎1, 𝑎0}&𝑈 𝐼𝑁𝑇 64_𝐶 (0𝑥5050505050505050)

after padding the all bits with 0, you will get,
𝑡𝑡𝑢𝑛 = {𝑎7, 0, 𝑎5, 0, 0, 𝑎2, 0, 𝑎0}
𝑡𝑡𝑖1 = {0, 0, 0, 0, 𝑎3, 0, 𝑎1, 0}
𝑡𝑡𝑖2 = {0, 𝑎6, 0, 𝑎4, 0, 0, 0, 0}

𝑡𝑡𝑟𝑒𝑠 = 𝑡𝑡𝑢𝑛 | 𝑡𝑡𝑖1 ≪ 3 | 𝑡𝑡𝑖2 ≫ 3
𝑡𝑡𝑟𝑒𝑠 = {𝑎7, 𝑎3, 𝑎5, 𝑎1, 𝑎6, 𝑎2, 𝑎4, 𝑎0}

which is the same as what the TT in 6 shows.
The examples give an specific illustration, other number of varibles can also use this magic mask
technique in mockturtle function api.

, Vol. 1, No. 1, Article . Publication date: February 2025.

	Abstract
	1 Background
	1.1 Turth table
	1.2 Mask

	2 Magic Mask
	2.1 Example of 2 variables
	2.2 Example of 3 variables
	2.3 Shift calculation
	2.4 Masks

